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EVALUATION OF LEVEL SET TOPOLOGY OPTIMIZATION
FORMULATIONS FOR DESIGN OF MINIMUM-DISPERSION

MICROFLUIDIC DEVICES

A.R. TERREL∗ AND K.R. LONG†

Abstract. Applying topology optimization to minimize the sample dispersion of a microfluidic
device is challenging in part because the fictitious permeability used to classify topological regions
tends to a smooth non-Boolean field, in contradiction to the requirement that a valid solution be
Boolean. Imposing the Boolean condition must be done carefully in order to avoid spurious local
minimizers or an excessively smooth solution. Here we investigate the behavior of two different
formulations of level-set based topology optimization on problems where we must find the Boolean
field that best approximates a specified non-Boolean field. We introduce a formulation based on
inequality constraints that can effectively satisfy the Boolean condition.

1. Introduction. The goal in shape optimization is to identify the shape of a
domain I such that when a physical problem is solved on that domain, an objective
function is minimized. The most general form of shape optimization is topology opti-
mization [2], in which the topology of the domain is allowed to vary; i.e., topological
holes and/or islands can appear or disappear. By its nature, topology optimization is
a large-scale boolean programming problem, because each point in a larger, embed-
ding domain is either in I or not. However, in practice it is rarely approached directly
in that form; rather, each point in the domain is characterized by a real number to
be driven, somehow, to the boolean extremes of 0 or 1. Much of the art in topology
optimization is choosing this reparametrization in such a way closely approximates a
boolean field without introducing spurious local minimizers.

In many problems, there is a natural reparametrization that is simple and works
well. In structural topology optimization, for example, if the relationship between
material density and stiffness is taken to be nonlinear and monotonic, then for certain
objective functions there will be no payoff to intermediate material densities. In other
words, in such problems the nature of the physical problem, objective function, and
constraints drives the material density naturally to a boolean solution [2]. In this
case, nothing special has to be added to the method to produce a boolean solution.

Here, though, we are interested in problems where no such lucky accident hap-
pens. The motivating problem for this study is the design of minimum-dispersion
microfluidic sensors; by minimum-dispersion we mean that a sample of particles that
enters the device together will not be dispersed by the flow. We represent the shape of
the channel by introducing an approximately-boolean permeability. The challenging
feature of this problem is that for the physics and objective function under consid-
eration, the solution to this problem is a permeability that varies smoothly between
the boolean values of zero and one, with most of the domain being at intermediate
permeabilities. Such a device cannot be manufactured. In this problem, then, we
must somehow externally – by means of a penalty or constraint – enforce the boolean
condition. The obvious way to do this is with a penalization on any non-boolean
values, but that is easily seen to be non-convex, and indeed, in practice it is found
that such a penalization introduces numerous artificial local minimizers.

An improved formulation was introduced by Cunha in his thesis [4]. Cunha
penalizes the slope of a level set function, which, as will be discussed below, allows
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Fig. 2.1. Example of a domain Ω with the black representing the exterior E and the white the
interior I.

fine control of the transition region where non-boolean values can occur. We will refer
to this method as the slope penalty method. Penalizing the gradient of a function is
less restrictive than penalizing the function itself, so that we expect (and find) fewer
artificial local minimizers with this method than with a direct penalization of non-
boolean permeabilities. However, the formulation still does have artificial minimizers,
and it is difficult to choose a penalty parameter loose enough to avoid these yet tight
enough to enforce the boolean condition.

We have thus introduced another method, which we call the slope barrier method,
in which a certain inequality constraint (to be described below) is imposed on the level
set function and its slope. This inequality constraint is an even looser restriction on
the problem, suggesting less problem with local minimizers, yet it can more strongly
enforce the boolean condition.

In this paper we will compare the slope penalty and slope barrier method on model
shape-matching problems having the difficult characteristics of minimum-dispersion
microflow. In section 2 we show a level set formulation of the shape optimization
problem. We motivate and describe the two methods to be compared in sections 2.1
and 2.2. We give some details in order to implement and optimize the objective
function in section 3. Finally we give testing methods and results of our comparison
in sections 4 and 5.

2. Formulation of the Problem. The formulation of our problem is the same
as outlined in Cunha’s thesis [4]. For topology optimization, we have a domain, Ω,
in our case this is a square array of pixels, and want to partition it into two different
subsets: the exterior E and the interior I, see Figure 2.1. The interior, I, is used to
represent portion of Ω that will be the domain of a PDE equation such as the flow in
our microfluidics application. The exterior, E = Ω− I, is the rest of Ω. The interface
between the two regions is given by the zero contour of a level set function, φ(x),

φ : x ∈ Ω→ R

The level set function defines a geometric shape one dimension higher than Ω, for
our purposes φ(x) ≥ 0 indicates x ∈ E , and x ∈ I otherwise. Thus our shape is
determined by the distribution χ:

χ(φ) =
{

0 if φ < 0
1 otherwise

To reach the goal of our topology optimization, we are concerned with the values
of the χ distribution. Optimizing on a large boolean problem is quite hard, so we
relax the problem by replacing it with a sigmoid function that maps to the interval
[0, 1] on the reals. The sigmoid function is a smooth interpolation of χ.

σ(φ) =
1
2

(
1 + tanh

(
φ

∆

))
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where ∆ is a given parameter. The parameter ∆ gives some control over the transition
of the sigmoid from values near 0 to values near 1, but this will be discussed further
in Section 2.1 with the introduction of the slope penalty method.

This formulation offers several advantages over a more traditional shape opti-
mization with parametric curves. First, the design variable that we manipulate in
our optimization algorithm is φ and not a boundary of our mesh. This allows us to
avoid remeshing because of topology changes. This also allows us to use a very rich
design space without limits on the curves we produce. Finally, using a smooth sig-
moid function insures that derivatives exist and give us the opportunity to use faster
optimization algorithms.

While there are several advantages with this formulation, the problem is ill posed.
The problem statement uses only the zero contour of the level set function φ, yet
there are infinitely many level set functions that have the same zero contour. Second,
the level set function has no restriction to be smooth. It could be a zig zag of an
infinite number of sinusoidal functions or anything else as perverse. By adding some
regularization to φ, we are able to guide the optimization to use certain types of
functions. We use a Tikhonov regularization for φ, to produce a smooth function [1].
For our applications this regularization will be added by the term:

α1

2

∫

Ω
|∇φ|2dΩ

We add another term for the regularization of σ. In our microfluidics application,
it also was important that we have a smooth shape in order to have a shape that is
manufacturable. To achieve this we use a total variation diminishing regularization
on σ:

α2

∫

Ω
(∇σ2)

1
2

The total variation diminishing regularization is used because Tikhonov is restrictive
of jumps in slope [1].

2.1. Slope Penalty Method. Because we relaxed χ to a sigmoid function,
there is a range for which our results will not be near 0 or 1. Let us call this range the
bandwidth, Λ. In other words Λ is the measure of the set {x ∈ Ω|ε < σ(φ(x)) < 1−ε}
for some given ε. This means that Λ is dependent on both ∆ and |∇φ|. To enforce
the criteria that the resulting shape be as boolean as possible, we prefer to have Λ
small. In order to control this at runtime we wish Λ dependent only on ∆. This could
be achieved by the constraint |∇φ| = 1, but such a constraint would be inhibitive
of the Tikhonov regularization. To balance between these two controls on ∇φ, we
use a penalty method to give an approximate constraint,which is characterized in the
objective function by adding the following term:

β

4

∫

Ω
(|∇φ|2 − 1)2dΩ

This approximate constraint is more a concession that we want |∇φ| ≈ 1. The β
term allows us to control how much to enforce this approximate constraint, when
β > α1 we enforce the approximate constraint more, and when β < α1 we enforce
Tikhonov regularization more. This penalty gives a method to increase or decrease
the bandwidth of σ at runtime with the ∆ parameter, with respect to our level of
Tikhonov regularization.
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2.2. Slope Barrier Method. The slope penalty method controls Λ by setting
a restriction of the slope of φ over all of Ω. However, the slope outside the bandwidth
does not affect the value of σ since it will be closer to 0 or 1 than our tolerance; any
work done in meeting the unit slope condition outside the transition band is therefore
wasted. We therefore introduce an alternative method, in which instead of a penalty
we use an inequality constraint:

(
φ

∆

)2

+ (∇φ)2 ≥ 1− ε

This term strictly regulates the slope of φ near the zero contour yet lets it vary freely
elsewhere.

To enforce this inequality constraint we use a barrier method, in which we put a
singular barrier at the boundary between the feasible and infeasible regions. This lets
us use an unconstrained optimization algorithm. Rather than the more conventional
log barrier [7], we use a piecewise but differentiable barrier that goes to zero a small
distance from the constraint surface. The sharpness of the curve for the barrier is a
controlled by the weight factor γ. The larger we allow γ the larger the tail leading up
to the barrier, which will possibly put some control on the size of Λ allowed.

3. Implementation. In the previous section, we have introduced ways of de-
scribing shapes in terms of a level set function, and means of regulating the smoothness
and the sharpness of the boolean transition. We also need to add some measure of
quality of the shape produced, i.e. an objective function. For testing purposes we are
only going to look at matching a specified target shape, E∗, and thus we will use a
Heaviside Distance function to compare our shape with the target shape, that is:

d(E , E∗) =
1
2

∫

Ω
(σ − σ∗)2dΩ

In addition, we will have the terms described above.
Now our full objective function consists of the following terms: a Heaviside Dis-

tance, a Tikhonov Regularization for φ, a total variation regularization for σ, a slope
penalty term. and a slope barrier term. Or in equation form:

minimize the function F where:

F =
1
2

∫

Ω
(σ − σ∗)2dΩ +

α1

2

∫

Ω
|∇φ|2dΩ + α2

∫

Ω
(∇σ2)

1
2 dΩ +

+
β

4

∫

Ω
(1.0−∇φ2)2dΩ

augmented to the inequality constraint:

∇φ2 +
(

φ

∆

)2

≥ (1− ε)

To test our different controls of the slope penalty and the barrier weight we can
adjust β and γ, respectively. Since we are not concerned so much about the level of
the regularization terms, we have fixed both α1 and α2 at 1.0 × 10−4. Doing this
we have a baseline configuration, β = γ = 0, for when the Tikhonov regularization
will be the dominant contribution to the control of φ. Now we turn our attention the
optimization algorithms that we used.
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3.1. Local Optimization. For local optimization we use the adaptive limited-
memory BFGS algorithm of Byrd and Boggs [3].

We tried to use ways of controlling φ and σ so that there would be few artificial
minimizers, that is minimizers that are not physically significant but that have been
introduced by our slope control methods. But it must be noted that there is a trade
off between the matching of our shape and keeping a boolean result. Furthermore,
in many problems there will also be physically significant local minimizers. We have
therefore found it necessary to embed the local optimization routine in an outer global
optimization loop.

3.2. Global Optimization. Generally speaking, our global optimization
scheme is that upon each successful local minimization, we try to “tunnel” in a
randomly-chosen direction to a lower function value. However, doing so blindly would
be a hopeless task with very low probability of finding a fruitful search direction; the
reason for this is that the vast majority of random perturbations one could make to
the function φ are at high spatial frequency, having little macroscopic effect on the
objective function. To find search directions giving a macroscopic effect, we favor
perturbations at low spatial frequencies, which is easily done by means of a truncated
Fourier series.

We generate search directions by updating our design variable φ as follows:

φ← φ +
M,N∑

m=−M,n=−N

Am,ne−i(πm
L x+ πn

L y).

Here L is the size of one side of our square grid of pixel and we take an M and N
much smaller than the number of pixels per axis. The coefficients Am,n are chosen
at random from different points on the complex plane. This give us a new direction
that is chosen from the subspace of smoothly-varying random fields.

With a direction computed in this way, we can try to tunnel to a better minimizer
by doing a line search in that direction. In practice, searching even in this restricted
subspace has a low probability of finding a better minimizer. Therefore, in practice we
often conditionally accept an uphill step; the probability for accepting an uphill step
can be determined by any convenient distribution; we use a Boltzmann factor. As in
simulated annealing [8], the temperature in the Boltzmann factor can be reduced as
the procedure progresses, thereby allowing frequent uphill steps early on, but more
stringently rejecting them later.

3.3. Software Implementation. The code is implemented using the Sundance
[6] and Trilinos [5] software packages.

4. Testing the methods. In order to test the two methods, we start from a
variety of images and attempt to match a set of target images, of different degrees
of difficulty. To demonstrate some properties of the two methods, we use a host of
target images, see Figure 4.1. These images provide a set of complex and simple
boolean and non-boolean values to compare. One of the target images is a smooth,
non-boolean picture based on the unconstrained solution to a microflow optimization
problem; a challenge will be to satisfy the boolean constraint when matching this
decidedly non-boolean image.

Another factor of interest is the dependence on the initial guess. We tested this
property by running the tests on a series of 1x1, 2x2, 3x3, 4x4, 5x5 grids of circles,
see Figure 4.2. We have discovered that to an extent the more disconnected shapes
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(a) (b) (c) (d) (e)

Fig. 4.1. The target images. (a) Simple boolean image, (b) Complex boolean image, (c) Simple
non-boolean image, (d) Complex non-boolean image, (e) Smooth solution to Unconstrained Minimum
Dispersion Problem.

(a) (b) (c) (d) (e)

Fig. 4.2. The input images. (a) 1x1, (b) 2x2, (c) 3x3, (d) 4x4, (e) 5x5.

initially given to the algorithm, the more accurate the output thus prompting these
initial shapes.

The final property studiedis the speed of convergence of the method to a better
solution. For each test we see how well it is able to handle a single line search to
give a local minimum and a number of additional line searches to find a better global
minimum. The first local minimum gives a sense of how the method responds in a
head to head comparison, whereas using a method of getting an new direction for the
global search will produce quite different directionss to search for each configuration.
One problem with a global search is always how long to let it run, whereas the first
local line search can be give a stopping criteria based on the convergence of the
objective function. For our experiments, we decided to stop the global search if one
of the following conditions were met: 1) the objective function was evaluated more
than 5000 times, 2) there were more than one hundred directions searched, or 3)
after testing 100 directions no direction was found that further reduced the objective
function. These criteria were chosen to simulate an engineer optimizing with limited
time and computational resources.

5. Results. We will see from our experiments that both methods do well at
matching the boolean images. As might be expected, the slope penalty method does
better at matching non-boolean shapes; however, recall that the purpose is not to
match a smooth shape perfectly, but rather to match it well while satisfying the
boolean condition. We expect the output to produce an image that is both a boolean
and conforms, at least in coarse outline, to the shape of the target. As we will show
sometimes it is easy to fulfill either part of this requirement but not both at the same
time. In our results we can differentiate the performance of the different methods by
the number of iterations required to yield a given reduction in objective function.

5.1. Boolean targets. With boolean targets we see that both methods match
the shape very well. The variation between methods comes in the form of global
minimizers, convergence rate, see Figure 5.1, and the transition, Λ, between I and E .

The results show that using only the Tikhonov regulation, see Figure 5.2, pro-
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Fig. 5.1. Sample convergence speed comparison

(a) target (b) baseline

Fig. 5.2. Sample Target and baseline configuration

duced a well matched shape and a small Λ. At the same time it did not produce a
large amount of global minimizers.

The slope penalty method, see Figure 5.3, tended to produce less shapely boolean
contours. Superficially, it also appears to converge more slowly, although that is
difficult to assess because the objective function is altered by the introduction of the
penalty term. The slope barrier method, see Figure 5.4, successfully reproduced the
sharp boolean images.

(a) β = 1.0e− 3 (b) β = 1.0e− 4 (c) β = 1.0e− 5 (d) β = 1.0e− 6 (e) β = 1.0e− 7

Fig. 5.3. Sample slope penalty configurations

5.2. Non-boolean targets. The most important test for our purposes is to be
able to find good boolean approximations to non-boolean images. We use as a target
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(a) γ = 1.0 (b) γ = 0.5 (c) γ = 0.1 (d) γ = 0.01 (e) γ = 0.001

Fig. 5.4. Sample slope barrier configurations

(a) target (b) solution

Fig. 5.5. Smooth target and boolean solution

image the smooth solution to our unconstrained microfluidics problem. The “true”
boolean solution can be found by taking everything that is at least 50% black and
giving it the value 1 and the rest 0, see Figure 5.5. This example almost reversed all
the results of the boolean targets, where the narrow Λ was true to the shape of the
target. We see in Figure 5.6 the results with a slope penalty method. As can be seen,
it fits the target image quite well, but does not satisfy the boolean condition.

For non-boolean problems the slope barrier method converged more slowly than
the slope penalty method and (as expected) for a small ∆ it resulted in a large
Heaviside distance from the boolean solution. The global optimization process also
a large number of global minimizers giving the optimization even more problems to
overcome. As can be seen in Figure 5.8, the solutions are, while sharply boolean, also
quite ugly and plagued by local minimizers.

This performance showed that the small values of ∆, usually 12 pixels, that
we used for the boolean targets were unsuitable for the non-boolean targets. By
increasing ∆ we were able to get performance closer to the slope penalty method,
but this still did not result in a boolean image that we would be able to use in our
application. Therefore we implemented a variable ∆ in the optimization loop, in which
we gradually reduce ∆ after a number of outer iterations. To give a fair comparison
we used a total number of global optimization steps equal to the non-variable ∆. This
method did considerable better that the static version, and was able to achieve a more
boolean shape that was closer to the shape of the solution, see Figure 5.9.

6. Conclusions. For boolean targets, the methods are closely comparable in
performance and in effectiveness. There is a tradeoff between faithfully matching
a non-boolean image and meeting a boolean constraint. The slope penalty method
provides a better “fit”, but does not easily meet the boolean condition. The slope
barrier method does a better job of meeting the boolean condition; in our microfluidics
applications that is the more important consideration. Finally, we observed that a
gradual reduction in bandwidth parameter ∆ is essential to getting clean results from
the slope barrier method.



166 Minimum-Dispersion Microfluidic Devices

(a) 4 circles (b) 9 circles (c) 16 circles (d) 25 circles

Fig. 5.6. Larger slope penalty (β = 1.0e− 4) Final Global iteration

(a) 4 circles, first (b) 4 circles, final (c) 9 circles, first (d) 9 circles, final

(e) 16 circles, first (f) 16 circles, final (g) 25 circles, first (h) 25 circles, final

Fig. 5.7. Smaller slope penalty β = 1.0e− 6, First and Final Global iteration

(a) 4 circles (b) 9 circles (c) 16 circles (d) 25 circles

Fig. 5.8. Slope Barrier γ = 0.001, Final Global iteration

(a) 4 circles (b) 9 circles (c) 16 circles (d) 25 circles

Fig. 5.9. Slope Barrier Reduction Method (γ = 0.001, reduces = 20, opts = 5, reduction = 0.9)
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