Finite Element Integration on GPUs

Matthew G. Knepley Andy R. Terrel
June 19, 2012

This work was sponsered by NSF through awards OCI-0850680 and OCI-
0850750. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation (NSF).

Abstract
We present a novel finite element integration method for low order
elements on GPUs. We achieve more than 100GF for element integration
on first order discretizations of both the Laplacian and Elasticity operators
on an NVIDIA GTX285, which has a nominal single precision peak flop
rate of 1 TF /s and bandwidth of 159 GB/s, corresponding to a bandwidth
limited peak of 40 GF/s.

1 Introduction

Graphical Processing Units (GPUs) present a promising platform for scientific
simulation, offering high performance with excellent power and cost efficiency.
However, despite advances in programmability for these devices [17], few numer-
ical libraries have made use of them. The challenge of rewriting a CPU code to
make use of a GPU’s architectural differences is a major barrier, which can lead
to slower code. As a result, high level simulation algorithms, finite elements
methods (FEM) in particular, are still not widely available.

In this paper, we summarize our experience with porting general FEM inte-
gration routines from the popular FEniCS project [13] to a GPU. By adjusting
the code generation tools available from FEniCS, a user is able to reuse their
high level weak form definition in both a CPU or GPU code. Using our decom-
position of global and local portions of the FEM integration routines, our port
is able to reach up to 100 GFlops on a single machine where highly-optimized
CPU codes, including hand-coded assembly routines, only reach the 12 GFlop
range [3]. By creating tools that allow researchers to leverage a GPU’s power
throughout their code, the GPU becomes an enabler of scientific discovery rather
than a limited tool for only a few codes.

We give an overview of available GPU codes for scientific computing in
section 2 discussing general tactics for speeding up a code with a GPU version.
For completeness, we review the tensor decomposition of FEM integration and

the available form languages available from the FEniCS project in section 3.
Our GPU port is described in section 4 with the numerical tests and results in
section 5.

2 Scientific GPU Codes

Several community packages are available for basic linear algebra, such as CUBLAS [18]
for the dense case and Thrust [?], CUSP [?], and CUDASparse [19] for the sparse
case. While there has been excellent work bringing high order methods to the
GPU, discontinuous Galerkin [11] and spectral elements [12], very little has fo-
cused on the low-order methods which make up the majority of finite element
codes. Initial work in this area comes from [14], but in this paper we focus on
optimizing the integration stage. [22] implemented assembly of a linear element
for elasticity in three dimensions, but was not able to eliminate branches from
the kernel, and used graphics primitives rather than CUDA as the implemen-
tation language. [4] also implements finite element assembly, but they consider
the element subroutine as a black-box to be executed in its entirety by each
thread. Solvers for FEM problem have been examined as well, e.g. [23], and
could potentially benefit from this work. Tools for runtime code generation and
optimization are detailed in [10], which we will make use of in our study.

There are many excellent descriptions of the NVIDIA GPU architecture in
the literature [15, 5, 17], so we will focus on the aspects salient to our problem.
GPUs can be characterized as a collection of small vector units which run in
single-instruction multiple-thread (SIMT) mode. In the GTX285 model from
NVIDIA on which we run our tests, the vector length is 8 and there are 30 of
these Streaming MultiProcessors (SM), as the vector units are called, clocked
at 1476 MHz. These allow for a memory bandwidth of 159 GB/s (STREAMS
benchmark performance of 130 GB/s) and peak flop rate of 692 GF/s. In our
integration implementation, we must allow enough concurrency to feed these
vector units, while minimizing thread divergence and synchronization, which
have large penalties on this SIMT processor. Moreover, in all GPU architec-
tures there is a very large latency to global memory (400-600 cycles on the
GTX285), as opposed to the shared and register memory co-located with the
SM which cost just a few cycles. Therefore, we also minimize traffic to global
memory by loading input into shared memory and storing intermediate results
for aggregation.

3 FEM Integration

In [7], it is shown that for any given multilinear weak form of arity r, we may
express the element tensor as a tensor contraction,

Ei0reir — Z G105 kg JCH05eo5ir (1)

HOseesbbg”
HOs--s g

We note that the element matrix is called A in [7]. The tensor K only depends on
the form itself and the reference element 7..¢, whereas the G tensor depends on
the mesh geometry and physical coefficients. Such a decomposition provides an
advantage over the standard quadrature since K can be precomputed and reused
by all of a GPU’s SMs. The arity g of G depends on the transformation needed
to map the form back onto the reference element, as well as any coefficients in
the form.

In order to illustrate this decomposition, we will give a small example, found
in Section 2 of [7]. The negative Laplacian with homogeneous Dirichlet bound-
ary conditions can be expressed in Galerkin weak form as

<Ui7 —AU> = <vvi7 vu> (2)
= Z 5 Voi(x) - Vu(x)dx (3)
ov; Ov;
- Z Z / Oz, 8351 @
B 0, Ov; 9, Ov;
- ; az; / axz D€, D, ag,j, 71de.)

where v; is any test function. Thus, the element matrix is given by

Ei; = Z G'" K}, (6)
where the analytic tensor is
ii Ov; Ov;
K, = dg, (7)

v Tret ag# af”

and the geometric tensor is
v ag aé.l/
=Y S =Y Sl ®)

We have used Roman indices to indicate summation over basis functions, and
Greek indices for summation over spatial dimensions.
As a second example, we express the linear elasticity operator in the same

form

(Vv VTV, Vut V))
1
_ Z / 7 (Vi + VTv,) : (Tu+ V7u) dx (10)
_ uj 0v; g (%m Ovjp | Oja
- zejjza:ﬁ / (axa Oz) (a% " drg = -
_ uj / (% O0v; g n aé-p.avi,a> (85,, dvj,p + 98y (%]a)
e,J,x 5 v Tret 61‘@ 85# 61‘5 ag“ 6l'a a&/ |J]r&§

(13)

Using symmetries of this form, the FEniCS Form Compiler, discussed below, is
able to decompose this into an analytic tensor K

. ov;la] 0v,[a]

K / 1 e ———d¢ (14)
" Z Tret M 9y

where ¢ and j are multiindices, running over a vector valued element, and « is

a component of this vector. The geometric tensor is identical to that for the

Laplacian,

GW:ZJ L) (15)

pova

3.1 More general forms

Our formalism can accomodate any multilinear operator. As a further illustra-
tion, we present the Laplace equation incorporating an inhomogeneous coeffi-
cient w,

J7 Véi(x) - w(x) Vu(x)dx (16)
— S ke W0k [92, 58 dx (17)
= Y ke Wk e, g?;?%%lﬂdf (18)
= Dk WjwWRGHYE Y. (19)

The full algebra for weak forms is detailed in [8].

Notice that the analytic K tensor is an integral over products of basis func-
tions and basis function derivatives (any member of the jet space). This means
that K may be calculated a priori, independent of the mesh or form coefficients.
We will use this property to design an efficient integration method on massively
parallel hardware.

3.2 Form Languages

Using the Unified Form Language (UFL) [1] from the FEniCS project, our sys-
tem accommodates generic weak forms. We use the FEniCS Form Compiler

(FFC) [8], which is implemented in Python, to process input forms and extract
parts of the intermediate representation (IR) for use in GPU kernels. We illus-
trate this process below using linear elasticity as an example. We begin with a
standard, primitive variable formulation,

/de (i (Vv+ V') - (Vu+ Vi) —v- f) =0 (20)

where v is a test function, u is the solution displacement, and f is body force.
The mathematics becomes the nearly equivalent Python

from ufl import interval, triangle, tetrahedron

from ufl import VectorElement, TestFunction, TrialFunction
from ufl import Coefficient, grad, inner, dx

domains = [None, interval, triangle, tetrahedron]

element = VectorElement(’Lagrange’, domains[dim], 1)

v = TestFunction(element)

u = TrialFunction(element)

f = Coefficient(element)

def epsilon(u):
Du = grad(u)
return 0.5%(Du + Du.T)

a
L

inner(epsilon(v), epsilon(u))*dx
inner (v, f)*dx

using the FEniCS UFL library. The FFC library can processes this form in
order to extract the G and K tensors needed for our integration routines,

import ffc, numpy
parameters = ffc.default_parameters()
parameters[’representation’] = ’tensor’

analysis = ffc.analysis.analyze_forms([a, L], {}, parameters)
ir = ffc.compiler.compute_ir(analysis, parameters)
K = ir[2] [0] [’AK’] [0] [0] . AO.astype (numpy.float32)

G

ir[2]1[0] [’AK’]1[0] [1]

where the K tensor is just a numeric array, whereas the G object contains
instructions for constructing the geometry tensor given the element Jacobian.

4 GPU Implementation

Given an array of geometry tensors for each element, the computation will
produce an array of element matrices. Each integration kernel invocation will
operate on a set of elements, which we term a batch, and thus the set of el-
ements will be divided into batches, of size elementBatchSize, for processing.

Each element integration is accomplished by contracting the geometry tensor
G with each block of the analytic tensor K, one for each element E;; of the
element matrix. We will assign one contraction to each thread in a thread
block. In order to increase concurrency, we will allow a thread block to work on
multiple elements simultaneously, with the size being numConcurrentElements.
Thus, for a vector element with dimension numComponents and a basis of size
numBasisFuncs, the thread block will have (numBasisFuncs-numComponents)?-
numConcurrentElements threads.

The interleaving of computation with reads and writes to global memory is a
strategy for hiding the latency of memory access. When a thread block attempts
to write the result of a tensor contraction to global memory, a second thread
block, currently in its compute phase, can be scheduled while it is waiting. In
our experiments, shown in Section 5, interleaving resulted in noticeably higher
performance, presumably due to the increased flexibility afforded to the thread
block scheduler. We also employ a thread coarsening [21] strategy to increase
performance by increasing the work per thread. This was used to great effect
by Volkov and collaborators (see [6]) in optimization of finite difference compu-
tations. For our problem, this means and increase in the number of geometry
tensors handled by a single thread.

We will construct both a CPU and GPU kernel from the same source tem-
plate, using the Mako [2] templating engine. This will allow us to both check
the GPU results, and compare timings easily. Moreover, a single testing setup
will verify both generated kernels. A similar capability could be achieved us-
ing OpenCL, specifying a different SIMT width for CPU and GPU, and more
aggressive loop restructuring. This will be the focus of future work.

4.1 Partitioning the Computation
The integration kernel has signature

__global__ void integrateJacobian(float *elemMat,
float *geometry,
float *analytic)

on the GPU, where geometry is an array of the G tensors for elementBatchSize
elements, analytic is the K tensor, and elemMat is an array of the element
matrix for each element. On the CPU, we have

void integrateJacobian(int numElements,
float *elemMat,
float *geometry,
float *analytic)

where the number of elements is passed explicitly to the CPU kernel so that
it can execute a loop, whereas the GPU execution grid replaces this loop. In
CUDA, we use the block decomposition of kernels to partition the elements into
batches,

/* Indexes element batch */
const int gridIdx = blockIdx.x + blockIdx.y*gridDim.x;

whereas on the CPU we use a loop over batches,

/* Loop over element batches */
const int batches = numElements/ELEMENT_BATCH_SIZE;
for(int gridIdx = 0; gridIdx < batches; ++gridIdx) {

where we note that in the code itself ELEMENT BATCH_SIZE is replaced by its
numeric value.

Once a batch of elements is allocated to a thread block, we assign a thread
to each contraction. In CUDA, we use the thread block decomposition to index
into K (KROWS = numBasisFuncs - numComponents),

/* This is (i,7) for test and basis functions */
const int Kidx = threadIdx.x + threadIdx.y*KROWS;

/* Unique thread ID (K block is for a single element) */
const int idx = Kidx;

and on the CPU we have

/* Loop over test functions */
for(int i = 0; i < KROWS; ++i) {
/* Loop over basis functions */
for(int j = 0; j < KROWS; ++j) {
/* This is (i,7) for test and basis functions */
const int Kidx = i + j*KROWS;
/* Unique thread ID (K block is for a single element) */
const int idx = Kidx;

This scheme must be modified slightly when we concurrently evaluate several
elements in a single thread block. In CUDA, we use the third thread block
dimension to index the simultaneous evaluations,

/* This 4s (4,7) for test and basis functions */
const int Kidx = threadIdx.x + threadIdx.y*KROWS;
/* Unique thread ID
(Same K block is used by all concurrent elements) */
const int idx = Kidx + threadIdx.z*KROWS*KROWS;

and on the CPU we introduce another loop

/* Loop over test functions */
for(int i = 0; i < KROWS; ++i) {
/* Loop over basis functions */
for(int j = 0; j < KROWS; ++j) {
/* Loop over simultaneous evaluations */
for(int k = 0; k < NUM_CONCURRENT_ELEMENTS; ++k) {

/* This ts (i,7) for test and basis functions */
const int Kidx = i + j*KROWS;
/* Unique thread ID
(Same K block is used by all concurrent elements) */
const int idx = Kidx + k*KROWS*KROWS;

Hereafter we will assume that we have simultaneous evaluations, since the re-
duction to the single evaluation case is straightforward. We will refer to the
set of contractions performed by a given thread as the sequential contractions,
and contractions that happen simultaneously using different sets of threads in
a thread block as concurrent contractions. The set of threads in a thread block
which all perform contractions for the same element set will be termed a con-
traction set.

In order to clarify the data layout on the GPU, Fig. 4.1 shows how mem-
ory and computation is laid out across the GPU. It represents the calculation
by our kernel of the FEM element matrices of the 3D P; Laplacian for eight
cells, evaluated concurrently in groups of two. Looking at subfigure (a), the
boxes along the sides are geometric cell data loaded when the kernel starts up,
and labeled by Gf where k counts the groups of concurrent evaluations and
¢ € [0,numConcurrentElements) is the index into each group. Each block in
the center matrix represents the Kij blocks to be contracted with each G to
produce the element matrix entry E%. The arrows represent the contraction
computation, linking the data involved, and are labeled by the thread which
executes the computation. Notice we have 32 threads in this example, which is
numBasisFuncs? - numConcurrentElements. Each thread marches through a set
of cells, generating a single element matrix entry each time.

4.2 Marshaling Data

For each sequential contraction, all threads in the contraction set must access
the set of G tensors for the elements in question. Therefore, these are loaded into
shared memory from the geometry input array using a sequence of coalesced
loads followed by a remainder if necessary. We illustrate this below for the case
where G is 3 x 3, elementBatchSize is 5, and there are 16 threads.

const int Goffset = gridIdx*DIM+DIM*ELEMENT_BATCH_SIZE;
__shared__ float G[DIM+*DIM+ELEMENT_BATCH_SIZE];

G[idx+0] = geometry[Goffset+idx+0];
G[idx+16] = geometry[Goffset+idx+16];
if (idx < 13) G[idx+32] = geometry[Goffset+idx+32];

In the CPU version, we merely load G from memory on the first iteration. Each
thread uses a single block of K for every contraction it performs. In 2D, we
have, after unrolling the loop,

const int Koffset = Kidx*DIM*DIM;
float K[DIM*DIM] ;

(a) Thread assignments for the calculation of two con-
current contractions for the first set of cells.

(b) Thread assignments for the calculation of two con-
current contractions for the second set of cells.

(¢) Thread assignments for the calculation of two con-
current contractions for the third set of cells.

(d) Thread assignments for the calculation of two con-
current contractions for the fourth set of cells.

Figure 1: Tensor Contraction kernel GﬁV(T)KEj for 3D P; Laplacian assem-
bly calculated for a batch of eight cells, with two cells evaluated concurrently.
Subfigure (a) shows the contraction at the first step, where geometric data for
the first two cells (GY and G}) is contracted with the subblocks of the K ten-
sor. Each thread performs a single contraction, resulting in a single element
of the cell FEM element matrix. Subfigures (b), (c) and (d) show subsequent
contractions for the othe pairs of cell input.

K[0] = analytic[Koffset+0];
K[1] = analytic[Koffset+1];
K[2] = analytic[Koffset+2];
K[3] = analytic[Koffset+3];

This load is performed after the G load, but before the call to __syncthreads ()
needed to make the G data available, in order to try and cover the latency of
this uncoalesced read. Finally, we allocate space to hold the element matrix
entry produced by each thread,

const int Eoffset = gridIdx*KROWS*KROWS+*ELEMENT_BATCH_SIZE;
float E[ELEMENT_BATCH_SIZE/NUM_CONCURRENT_ELEMENTS] ;

however we can replace E[] with a single scalar if we interleave calculation with
writes to global storage, as shown below.

For each thread block, we load elementBatchSize G tensors, one K tensor,
and write elementBatchSize E matrices. We can parametrize the size of these
tensors using two variables, the total number of entries in G, sizeG, and the
number of basis functions per element, numBasisFuncs. Thus, the memory
traffic per thread thread block is given by

MTrp = elementBatchSize (sizeG + numBasisFunch) + numBasisFuncs®sizeG
(21)
floating point numbers, and the shared memory required is

BasisFuncs®
M Stp = elementBatchSize (sizeG + Somoass e) , (22)

numConcurrentElements

with sizeG in thread local memory for each block of K. For example, in our 3D
P, Laplacian evaluation, we have sizeG = 9 and numBasisFuncs = 4, so that

numConcurrentElements

1
M Stp = elementBatchSize <9 + 0 > . (23)

The best performance was realized using 128 elements per batch and 2 concur-
rent evaluations, so that

1
MSrp =128 (94 20) a2 _g5pp, (24)
2 scalar

Since the GTX 285 has 1GB of main memory, it could contain all the data for
almost 16M elements.

4.3 Computation

When computing the contraction of a set of G tensors with a block of K, we
can choose to update global memory after the entire set of contractions has
been processed, or after each contraction in turn. The interleaveStores flag

10

determines which strategy we pursue in the generated code. Interleaving com-
putation with writes to global memory may allow the latency of a write to
be covered by computation from another warp in the thread block, or another
thread block scheduled on the SM.

Our generation engine allows each loop to be either generated, or unrolled
to produce straight-line code [16]. In our examples, we will only display the
loop code due to its brevity, but unrolled versions are presented in the results
(see Section 5).

const int serialBatchSize =
ELEMENT_BATCH_SIZE/NUM_CONCURRENT_ELEMENTS;
for(int b = 0; b < serialBatchSize; ++b) {
const int n = b*numConcurrentElements;
contractBlock(’n’, dim, ’E’, ’G’, "Goffloc", ’K’, loopUnroll)
¥

Here contractBlock() generates the proper contraction code using the names
provided for input and output arrays and offsets, the sizes, and the flag for loop
unrolling.

We then write each element matrix into memory contiguously with a fully
coalesced write,

/* Store contraction results */
const int outputSize = NUM_CONCURRENT_ELEMENTS+*KROWS+KROWS;
for(int n = 0; n < serialBatchSize; ++n) {
elemMat [Eoffset+idx+n*outputSize] = E[n];
¥

where we note that this loop is fully unrolled in the generated code.

When interleaving stores, we do a single contraction and then immediately
write the result to global memory. The latency for this write can be covered by
scheduling contractions in other warps on this SM. This strategy has produced
consistently better results than fully calculating the contractions before writing
the resulting element matrices to global memory. We show the code below,
where as before the contraction is fully inlined in the generated code.

for(int b = 0; b < serialBatchSize; ++b) {
const int n = b*numConcurrentElements;
E =0.0;
contractBlock(’n’, dim, ’E’, ’G’, "Goffloc", ’K’, loopUnroll)
/* Store contraction result */
elemMat [Eoffset+idx+b*outputSize] = E;
}

Each contraction consumes 2 - sizeG flops, and there are numBasisFunc?
contractions per element matrix. Thus, the total flops executed per thread
block is given by

Wrp = 2 - sizeG - numBasisFunc? - elementBatchSize. (25)

11

For our 3D P, Laplacian calculation, we have 288 flops per cell. Using (21) and
(25), we can classify this algorithm according to its resource requirements. We
can examine the ratio of flops to bytes required, which we will call 3,

W 1 1
= Dt~ 2 I I I ' (26)
TB z+ sizeG + elementBatchSize

B

numBasisFunc

For our 3D P; Laplacian calculation with batches of 128 cells, we have 36, 864
flops and 13,376 bytes transferred, giving

flop
=2. .
g £ byte

(27)

For a very large batch size, we could approach 8 = 2.88, whereas for a single cell
B = 0.43. We can make use of this ratio by calculating the bandwidth necessary
to run at the peak flop rate for the GTX 285,
Foear 692
By = 2% = “_GB/s = 252GB/s, 2
q 5 2.75(:7 /s = 252G B/s (28)
which is beyond the device capability. At the achievable bandwidth, we could
obtain
Fraz = BBpeak = (2.75)(130)GF/s = 358G F/s. (29)

We do not achieve this peak, but something above the single cell threshold of
56GF/s, which suggests that we have been unable to completely cover the non-
coalesced load of K for each thread block. A future enhancement might put K
into constant memory to better utilize bandwidth.

5 Results

We demonstrate the performance of our integration method using the common
Laplacian and linear elasticity operators, as shown in Fig. 2, with all computa-
tions being done in single precision. We achieve nearly 100GF for the Laplacian,
and even a little more for the elasticity operator. Note that we achieved the
highest performance using interleaved stores and having each thread block op-
erate on two elements simultaneously. The batch sizes are somewhat different,
but performance is not very sensitive to this variable, as shown in Fig. 3.

To demonstrate the benefit of interleaving stores, we examine integration
of the 3D P; Laplacian. The best performance was realized for an element
batch size of 128 using 2 concurrent element evaluations. In Fig. 4 we show the
results for these choices for both fully unrolled loops and the no unrolling case.
Clearly, interleaving produces better performance, even in the fully unrolled
case where discrepancies appear only for large runs. The disparity between
the loop unrolling cases indicates that the compiler may not be applying this
transformation optimally. We have performed over 3000 test runs with various
combinations of the input parameters, which are archived along with the source
code, so that they may be mined in a similar fashion by other researchers.

12

GPU Flop Rate for
3D P, Lagrange Laplacian and 2D P, Lagrange Elasticity
120000 T T T

100000

80000

60000

MFlops/s

40000

20000

— Laplacian bs128 ce2 is
— Elasticity bs256 ce2 is

0 50000 100000 150000 200000
Number of Elements

Figure 2: This graph shows the peak performance achieved for element inte-
gration of the 3D P; Laplacian and 2D P; Elasticity operators. We use bs to
denote the element batch size, ce the number of concurrent element evaluations,
1s interleaved stores, and unroll for fully unrolled contraction loops.

13

GPU Flop Rates for 2D Elasticity
GFlops/s for 100K elements GFlops/s for 200K elements

bs256 ce4d 100
bs256 cel 100
bs256 ce2 100

bs128 ce2
bs128 cel 79
bs128 ced 74
bs64 cel
bs64 ce2 54

bs64 ce4d

Figure 3: This graph shows the dependence of flop rate on the element batch size
for the 2D P; Elasticity operator. We use bs to denote the element batch size
and ce the number of concurrent element evaluations; each run used interleaved
stores and fully unrolled contraction loops.

14

GPU Flop Rate for 3D P, Lagrange Laplacian

80000 Element Blgcksize = 128
t Elem = 2

70000
60000

£ 50000

MFlops/

40000
30000
20000
10000 =—=a NVIDIA bs128 ce2 is
4— NVIDIA bs128 ce2
50000 100000 150000 200000
Number of Elements

GPU Flop Rate for 3D P, Lagrange Laplacian

80000 Element Blocksize = 128

Concurrent Elem = 2
70000
60000

50000

MFlops/s

40000

30000

20000

10000

=—a NVIDIA bs128 ce2 is unroll
4—4 NVIDIA bs128 ce2 unroll
50000 100000 150000 200000
Number of Elements

Figure 4: This graph shows the dependence of flop rate on the the interleav-
ing of global stores for the 3D P; Laplacian operator. We use bs to denote
the element batch size, ce the number of concurrent element evaluations, is in-
terleaved stores, and unroll for fully unrolled contraction loops. The left graph
shows performance with no loop unrolling, and the right for fully unrolled loops.

15

6 Discussion

We have shown that by generating vectorized code, which is also able to overlap
computation and memory access, we can take advantage of the large memory
bandwidth and many vector units of a GPU for FEM integration, even on very
low order elements. We expect this strategy to be effective for the forseeable
future on manycore machines since we can easily accomodate increased vector
lengths by using more concurrent element evaluations. We note that a version
of the Laplace kernel was tested in which K is loaded into shared memory and
all threads perform the complete contraction with a given G simultaneously.
However, this strategy was abandoned due to lack of efficiency, mainly arising
from the lower level of concurrency available.

We will extend these initial results to more complex operators with variable
coefficients, as well as systems of equations which arise in multiphysics prob-
lems. This will necessitate a more systematic approach to optimization over
the algorithmic variants. We plan to use the loop slicing tool Loo.py [9] and
generated, optimized quadrature rules from FFC [20] in addition to exhaustive
strategies. We have an integrated build and test framework, which allows us to
run all variants in a single execution and record the results in HDF5 for later
processing and analysis. Moreover, when processing coupled systems, we will
be able to break the weak form into blocks commensurate with different precon-
ditioning strategies and evaluate the performance. This entire package will be
integrated into both PETSc and FEniCS for easy use by projects already using
these frameworks.

References

[1] M. S. Alnaes and A. Logg. UFL Specification and User Manual. Simula
Research, 2009. https://launchpad.net/ufl.

[2] Mike Bayer. The Mako templating system.
http://www.makotemplates.org/, 2010.

[3] N. Bell and M. Garland. The Cusp library.
http://code.google.com/p/cusp-library/, 2010.

[4 N. Bell and J. Hoberock. The Thrust library.
http://code.google.com/p/thrust/, 2010.

[5] Jed Brown, 2011. Private communication with code sample.

[6] Cris Cecka, AJ Lew, and Eric Darve. Assembly of finite element methods
on graphics processors. International Journal for Numerical Methods in
Engineering, 85:640-669, 2011.

[7] Jonathan Cohen and Michael Garland. Solving computational problems
with GPU computing. Computing in Science and Engineering, 11(5):58—
63, 2009.

16

8]

[15]

[16]

[17]

[18]

[19]

Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan
Carter, Leonid Oliker, David Patterson, John Shalf, and Katherine Yelick.
Stencil computation optimization and auto-tuning on state-of-the-art mul-
ticore architectures. In Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, SC ’08, pages 4:1-4:12, Piscataway, NJ, USA, 2008. IEEE
Press.

R. C. Kirby, M. G. Knepley, A. Logg, and L. R. Scott. Optimizing the
evaluation of finite element matrices. SIAM J. Sci. Comput., 27(6):741-
758, 2005.

Robert C. Kirby and Anders Logg. A compiler for variational forms. ACM
Transactions on Mathematical Software, 32(3):417-444, 2006.

Andreas Klockner. Loo.py, 2011. unpublished loop slicing tool.

Andreas Klockner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul
Ivanov, and Ahmed Fasih. PyCUDA: GPU run-time code generation
for high-performance computing. http://arxiv.org/abs/0911.3456v1,
2009.

Andreas Kloéckner, Tim Warburton, Jeff Bridge, and Jan S Hesthaven.
Nodal discontinuous galerkin methods on graphics processors. Journal of
Computational Physics, 228:7863-7882, 2009.

Dimitri Komatitsch, David Michéa, and Gordon Erlebacher. Porting a high-
order finite-element earthquake modeling application to NVIDIA graph-
ics cards using CUDA. Journal of Parallel and Distributed Computing,
69(5):451 — 460, 2009.

Anders Logg, Kent-Andre Mardal, and Garth N. Wells. Automated scien-
tific computing. http://launchpad.net/fenics-book, To appear 2011.

G.R. Markall, D.A. Ham, and P.H.J. Kelly. Generating Optimised Finite
Element Solvers for GPU Architectures. In American Institute of Physics
Conference Series, volume 1281, pages 787-790, College Park, MD, 2010.
ATP.

N. Maruyama, A. Nukada, and S. Matsuoka. A high-performance fault-
tolerant software framework for memory on commodity GPUs. In Parallel
& Distributed Processing (IPDPS), 2010 IEEE International Symposium
on, pages 1-12, Piscataway, NJ, 2010. IEEE.

G.S. Murthy, M. Ravishankar, M.M. Baskaran, and P. Sadayappan. Op-
timal loop unrolling for GPGPU programs. In 2010 IEEE International
Symposium on Parallel & Distributed Processing (IPDPS), pages 1-11, Pis-
cataway, NJ, April 2010. IEEE.

NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architec-
ture Programming Guide. NVIDIA Corporation, Santa Clara, CA, 2007.

17

[20]

[21]

[22]

23]

NVIDIA Corporation. NVIDIA CUBLAS User Guide. NVIDIA Corpora-
tion, Santa Clara, CA, 2010.

NVIDIA Corporation. NVIDIA CUSPARSE User Guide. NVIDIA Corpo-
ration, Santa Clara, CA, 2010.

K. Oelgaard, A. Logg, and G. N. Wells. Automated code generation for
discontinuous galerkin methods. SIAM J. Sci. Comput., 31(2):849-864,
2008.

Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone,
David B. Kirk, and Wen-mei W. Hwu. Optimization principles and ap-
plication performance evaluation of a multithreaded GPU using CUDA.
In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
practice of parallel programming, PPoPP ’08, pages 73-82, New York, NY,
USA, 2008. ACM.

Z.A. Taylor, M. Cheng, and S. Ourselin. High-speed nonlinear finite element
analysis for surgical simulation using graphics processing units. Medical
Imaging, IEEE Transactions on, 27(5):650-663, may 2008.

Stefan Turek, Dominik Goddeke, Christian Becker, Sven H.M. Buijssen,
and Hilmar Wobker. FEAST - realisation of hardware-oriented numerics
for HPC simulations with finite elements. Concurrency and Computation:
Practice and Experience, 22(6):2247-2265, May 2010.

18

