
Topological optimization of the evaluation of
finite element matrices

Robert C. Kirby and Anders Logg and L. Ridgway Scott and Andy R. Terrel

Abstract

We present a topological framework for finding low-flop algorithms for evaluatin g
element stiffness matrices associated with multilinear forms for finite elemen t methods.
This framework relies on phrasing the computation on each element as the contraction
of each of collection of reference element tensors with an elem ent-specific geometric
tensor. We then present a new concept of complexity -reducing relations that serve
as distance relations between these reference el ement tensors. This notion sets up a
graph-theoretic context in which we may fi nd an optimized algorithm by computing a
minimum spanning tree. We present expe rimental results for some common multilinear
forms showing significant reduction s in operation count and also discuss some efficient
algorithms for building the graph we use for the optimization.

1 Introduction

Several ongoing projects have led to the development of tools for automating important
aspects of the finite element method, with the potential for increasing code reliability and
decreasing development time. By developing libraries for existing languages or new domain-
specific languages, these software tools allow programmers to define variational forms and
other parts of a finite element method with succinct, mathematical syntax. Existing C++
libraries for finite elements include DOLFIN [6, 7], Sundance [16, 17] and deal.II [2]. These
rely on some combination of operator overloading and object orientation to present a high-
level syntax to the user. Other projects have defined new languages with their own grammar
and syntax, such as FreeFEM [20], GetDP [5], and Analysa [1]. Somewhere between these two
approaches is the FEniCS Form Compiler, FFC [13, 15] developed primarily by the second
author. This Python library relies on operator overloading to define variational forms, but
rather than relying on the Python interpreter to evaluate the forms, FFC generates low-level
code that can be compiled into other platforms, especially DOLFIN.

While these tools are effective at exploiting modern software engineering to produce workable
systems, we believe that additional mathematical insight will lead to even more powerful

1

codes with more general approximating spaces and more powerful algorithms. For one, work
by the first author [9, 10] shows how the Ciarlét definition of the finite element leads to a
code for arbitrary order elements of general type. This code, FIAT, is used by FFC and
is currently being integrated with Sundance. Second, the first three authors together with
Knepley [11, 12], studied how to efficiently (in the sense of operation count) evaluate local
stiffness matrices for finite element methods. All entries of the local stiffness matrix for
an element e may be expressed as the contraction of some reference element tensor with a
“geometric” tensor. To build the n× n stiffness matrix for one element, one must contract
this tensor with n2 reference element tensors. We saw that there are relations between many
of these tensors (equality, colinearity, small Hamming distance) that, if exploited, lead to an
algorithm with significantly fewer floating point operations.

In [11], we devised a crude algorithm that searched for and exploited these dependencies,
generating simple Python code for evaluating the local stiffness matrix for the Laplacian on
triangles given the geometric tensor. In this paper, we set the optimization process in a
more abstract graph/topological context. In Section 2, we express the calculation for some
finite element operators as tensor contractions. These ideas are more fully developed in [13],
where the first two authors show how this tensor structure may be used to implement a
compiler capable of generating the reference tensors and hence code for building the stiffness
matrices for general multilinear forms. In Section 3, introduce the idea of complexity-reducing
relations, which are a kind of distance relations among the tensors that serve to model the cost
of complexity in computing the contractions. Using these ideas, we show how to derive an
algorithm for performing the computation that is optimal in a certain sense. We demonstrate
the reduction in operation count for several finite element operations in Section 4. After this,
we show how this efficient algorithm may be derived more efficiently through some search
procedures in Section 5 and make some conclusions and remarks about ongoing work in
Section 6.

2 Finite element formulation

The finite element method is a general methodology for the discretization of differential
equations. A linear (or linearized) differential equation for the unknown function u is ex-
pressed in the form of a canonical variational problem and the discrete approximation U of
u is sought as the solution of a discrete version of the variational problem [4, 3]: Find U ∈ V
such that

a(v, U) = L(v) ∀v ∈ V̂ , (1)

where (V̂ , V) is a pair of suitable discrete (typically piecewise polynomial) function spaces,
a : V̂ × V → R a bilinear form and L : V̂ → R a linear form.

The variational problem (1) corresponds to a linear system Aξ = b for the expansion co-
efficients ξ ∈ RM of the discrete function U in a basis {ϕi}Mi=1 for V . If {ϕ̂i}Mi=1 is the
corresponding basis for V̂ , the entries of A and b are given by Aij = a(ϕ̂i, ϕj) and bi = L(ϕ̂i)

2

respectively. When we consider consider general multilinear forms below, the multilinear
form a is represented by a tensor A.

2.1 Multilinear forms

Let now {Vi}ri=1 be a given set of discrete function spaces defined on a triangulation T =
{e} of Ω ⊂ Rd. We consider a general multilinear form a defined on the product space
V1 × V2 × · · · × Vr:

a : V1 × V2 × · · · × Vr → R. (2)

Typically, r = 1 (linear form) or r = 2 (bilinear form), but forms of higher arity appear fre-
quently in applications and include variable coefficient diffusion and advection of momentum
in the incompressible Navier–Stokes equations.

Let {ϕ1
i }

M1
i=1, {ϕ2

i }
M2
i=1, . . . , {ϕr

i}Mr
i=1 be bases of V1, V2, . . . , Vr and let i = (i1, i2, . . . , ir) be a

multiindex. The multilinear form a then defines a rank r tensor given by

Ai = a(ϕ1
i1
, ϕ2

i2
, . . . , ϕr

ir). (3)

In the case of a bilinear form, the tensor A is a matrix (the stiffness matrix), and in the case
of a linear form, the tensor A is a vector (the load vector).

To compute the tensor A by assembly, we need to compute the element tensor Ae on each
element e of the triangulation T of Ω [13]. Let {ϕe,1

i }
n1
i=1 be the restriction to e of the subset

of {ϕ1
i }

M1
i=1 supported on e and define the local bases on e for V2, . . . , Vr similarly. The rank

r element tensor Ae is then given by

Ae
i = ae(ϕ

e,1
i1

, ϕe,2
i2

, . . . , ϕe,r
ir

). (4)

2.2 Evaluation by tensor representation

The element tensor Ae can be efficiently computed by representing Ae as a special tensor
product. If the multilinear form a is given by an integral over the domain Ω, then each
entry Ae

i of Ae is given by an integral over the element e. By a change of variables and a
series of linear transformations, we may rewrite this integral as an integral over a reference
element E. In particular, when the map from the reference element E is affine, the linear
transformations of derivatives can be moved outside of the integral to obtain a representation
of the element tensor Ae as a tensor product of a constant tensor A0 and a tensor Ge that
varies over the set of elements,

Ae
i = A0

iαGα
e , (5)

or more generally a sum Ae
i = A0,k

iα Gα
e,k of such tensor products, where i and α are multiindices

and we use the convention that repetition of an index means summation over that index.

3

We refer to A0 as the reference tensor and to Ge as the geometric tensor. The rank of the
reference tensor is the sum of the rank r = |i| of the element tensor and the rank |α| of
the geometric tensor Ge. As we shall see, the rank of the geometric tensor depends on the
specific form.

In [13], we present an algorithm that computes the tensor representation (5) for fairly general
multilinear forms. This algorithm forms the foundation for the FEniCS Form Compiler, FFC
[15].

As an example, we consider here the tensor representation of the element tensor Ae for
Poisson’s equation −∆u(x) = f(x) with homogeneous Dirichlet boundary conditions on a
domain Ω. The bilinear form a is here given by a(v, u) =

∫
Ω
∇v(x) · ∇u(x) dx and the linear

form L is given by L(v) =
∫

Ω
v(x)f(x) dx. By a change of variables using an affine map

Fe : E → e, we obtain the following representation of the element tensor Ae:

Ae
i =

∫
e

∇ϕe,1
i1

(x) · ∇ϕe,2
i2

(x) dx

= det F ′
e

∂Xα1

∂xβ

∂Xα2

∂xβ

∫
E

∂Φ1
i1
(X)

∂Xα1

∂Φ2
i2
(X)

∂Xα2

dX = A0
iαGα

e ,

(6)

where A0
iα =

∫
E

∂Φ1
i1

(X)

∂Xα1

∂Φ2
i2

(X)

∂Xα2
dX, Gα

e = det F ′
e

∂Xα1

∂xβ

∂Xα2

∂xβ
, and Φj

ij
= ϕe,j

ij
◦ Fe for j = 1, 2.

We see that the reference tensor A0 is here a rank four tensor and the geometric tensor Ge

is a rank two tensor. In [11], we saw that dependencies frequently occur between A0
i and A0

j

for many multiindices i, j that can reduce the overall cost of computation.

3 Optimizing stiffness matrix evaluation

3.1 An abstract optimization problem

Since all of the computation to evaluate a local stiffness matrix for a multilinear form is
tensor contraction, we may just as easily consider them as vectors and contraction as the
Euclidean inner product. To formalize the optimization process then, we let Y = {yi}ni=1 be
a collection of n vectors in Rm. In the most general case, this is a collection rather than a
set, as some of the items in Y may be identical. Corresponding to Y , we must find a process
for computing for arbitrary g ∈ Rm the collection of items {(yi)

t
g}ni=1. Throughout this

paper, we will measure the cost of this as the total number of multiply-add pairs (MAPs)
required to complete all the dot products. This cost is always bounded by nm, but we
hope to improve on that. This could be alternatively formalized as building an abstract
control-flow graph for performing the dot products that is equivalent to the naive process
but contains a minimal number of nodes. Our techniques, however, rely on structure that is
not apparent to traditional optimizing compilers, so we prefer the present formulation.

4

We seek out ways of optimizing the local matrix evaluation that rely on notions of distance
between a few of the underlying vectors. The Euclidean metric is not helpful here; we focus
on other, discrete measures of distance such that if y and z are close together, then ytg is
easy to compute once ztg is known (and vice versa). Many of the dependencies we considered
in [11] were between pairs of vectors — equality, colinearity, and Hamming distance. Here,
we develop a theory for optimizing the evaluation of finite element matrices under binary
relations between the members of the collection. This starts by introducing some notions
of distance on the collection of vectors and finds an optimized computation with respect to
those notions by means of a minimum spanning tree.

3.2 Complexity-reducing relations

Definition 1 Let ρ : Y × Y → [0, m] be symmetric. We say that ρ is complexity-reducing
if for every y, z ∈ Y with ρ(y, z) ≤ k < m, ytg may be computed using the result ztg in no
more than k multiply-add pairs.

The topological structure induced by complexity-reducing relations may not be a metric
space, as we do not require a triangle inequality to hold. We shall remark on this further
below.

Example 1 Let e+(y, z) = d(1 − δy,z), where δy,z is the standard Kronecker delta. Then,
e+ is seen to be complexity-reducing, for if e+(y, z) = 0, then ytg = ztg for all g ∈ Rm

and hence the former requires no arithmetic once the latter is known. Similarly, we can let
e−(u, v) = e+(u,−v), for if u = −v, then computing utg from vtg requires only a sign flip
and no further floating point operations.

Example 2 Let

c(y, z) =


0, y = z
1, y = αz for some α ∈ R, α 6= 0, 1
m, otherwise

(7)

Then c is complexity-reducing, for ytg = (αz)tg = α(ztg), so ytg may be computed with one
additional floating point operation once ztg is known.

Example 3 Let H+(y, z) be the Hamming distance, the number entries in which y and z
differ. Then H+ is complexity-reducing. If H+(y, z) = k, then y and z differ in k entries,
so the difference y − z has only k nonzero entries. Hence, (y − z)tg costs k multiply-add
pairs to compute, and we may write ytg = (y − z)tg + ztg. By the same argument, we can
let H−(y, z) = H+(y,−z).

5

Theorem 1 Let ρ1 and ρ2 be complexity-reducing relations. Define

ρ(y, z) = min(ρ1(y, z), ρ2(y, z)). (8)

Then ρ is a complexity-reducing relation.

Proof. Pick y, z ∈ Y , let 1 ≤ i ≤ 2 be such that ρ(y, z) = ρi(y, z) and let ρi(y, z) ≡ k. But
ρi is a complexity-reducing relation, so for any g ∈ Rm, ytg may be computed in no more
than k = ρ(y, z) multiply-add pairs. Hence ρ is complexity-reducing.

This simple result means that we may consider any finite collection of complexity-reducing
relations (e.g. colinearity together with Hamming distance) as if they were a single relation
for the purpose of finding an optimized computation in the later discussion.

Definition 2 If ρ is a complexity-reducing relation defined as the minimum over a finite set
of complexity-reducing relations, we say that it is composite. If it is not, we say that it is
simple.

Remark 1 To see that not all complexity-reducing relations are metrics, it is easy to find a
complexity-reducing relation that is the minimum over two metrics that violates the triangle
inequality. To see this, let ρ(y, z) = min(H+(y, z), c(y, z)). It is not hard to show that H+

and c are both metrics. If we take y = (1, 2, 2)t and z = (0, 4, 4)t, then ρ(y, z) = 3 since the
vectors are neither colinear nor share any common entries. However, if we let x = (0, 2, 2)t,
then ρ(y, x) = 1 since the vectors share two entries and ρ(x, z) = 1 by colinearity. Hence,
ρ(y, z) > ρ(y, x) + ρ(x, z), and the triangle inequality fails.

Remark 2 Later, we will put all of the vectors into a graph with weights given by the values
of a complexity-reducing relation. Computing all-to-all shortest paths in this graph would
provide a metric provided that ρ(y, z) 6= 0 whenever y 6= z. However, this is by no means
necessary.

3.3 Finding an optimized computation

Having defined complexity-reducing relations and given several examples, we now show how
they may be used to determine an optimized evaluation of the stiffness matrix. We shall
work in the context of a single complexity-reducing relation ρ, which may be composite.

In order to compute {(yi)tg}ni=1, we would like to pick some yi ∈ Y and compute (yi)tg.
Then, we want to pick some yj that is very close to yi under ρ and then compute (yj)tg.
Then, we pick some yk that is very close to either yi or yj and compute that dot product.

6

So, this process continues until all the dot products have been computed. Moreover, since
the vectors Y depend only on the variational form and finite element space and not the mesh
or parameters, it is possible to do this search once offline and generate low-level code that
will exploit these relations. We first formalize the notion of finding the optimal computation
and then how the code may be generated.

We introduce a weighted, undirected graph G = (Y,E) where Y is our collection of vectors
defined above. Our graph is completely connected; that is, every pair of vectors yi, yj are
connected by an edge. The weight of this edge is defined to be ρ(yi, yj). We may think of
walking along the edge from yi to yj as using the dot product (yi)tg to compute (yj)tg. If
ρ is composite, it will be helpful to know later which underlying relation gave the minimum
value used for ρ. So, suppose that ρ(y, z) = min{ρi(y, z)}Ri=1. For any fixed y, z, let %(y, z)
be a in integer in [1, R] such that ρ%(y,z)(y, z) = ρ(y, z). In addition to weights, we thus
associate with each edge {yi, yj} the entity %(yi, yj).

A standard graph-theoretic object called a minimum spanning tree is exactly what we
need [14]. A spanning tree, which we shall denote (Y,E ′) is a subgraph that satisfies certain
properties. First, it contains all of the n nodes of the original graph. Second, (Y,E ′) is
connected. Finally, E ′ has n− 1 edges, so that there are no cycles (thus it is a tree). Now,
there are possibly many spanning trees for a given graph. Every spanning tree has a weight
associated with it that is the sum of the weights of its edges. A minimum spanning tree is a
spanning tree such that the sum of the edge weights is as small as possible. Minimum span-
ning tree algorithms start with a particular node of the graph, called the root. Regardless
of which root is chosen, minimum spanning tree algorithms will generate trees with exactly
the same sum of edge weights.

While technically a minimum spanning tree is undirected, we can think of it as being a
directed graph with all edges going away from the root. Such a notion tells us how to
compute all of the dot products with minimal operations with respect to ρ. We start with
the root node, which we assume is y0, and compute (y0)tg. Then, for each of the children
of y0 in the tree, we compute the dot products with g using the result of (y0)tg. Then, we
use the dot products of the children to compute the dot products of each of the children’s
children, and so on. This is just a breadth-first traversal of the tree. A depth-first traversal
of the tree would also generate a correct algorithm, but it would likely require more motion
of the computed results in and out of registers at run-time.

The total number of multiply-add pairs in this process is m for computing (y0)tg plus the
sum of the edge weights of (Y,E ′). As the sum of edge weights is as small as it can be, we
have a minimum-cost algorithm for computing {(yi)tg}ni=1 with respect to ρ for any g ∈ Rm.
On the other hand, it is not a true optimal cost as one could find a better ρ or else use
relations between more than two vectors (say three coplanar vectors). One other variation
is in the choice of root vector. If, for example some yi has several elements that are zero,
then it can be dotted with g with fewer than m multiply add pairs. Hence, we pick some
ȳ ∈ Y such that the number of nonzero entries is minimal to be the root. We summarize
these results in a theorem:

7

Theorem 2 Let G = (Y,E) be defined as above and let g ∈ Rm be arbitrary. The total
number of multiply-add pairs needed to compute {(yi)tg}ni=1 is no greater than m′ +w, where
m′ is the minimum number of nonzero entries of a member of Y and w is the weight of a
minimum spanning tree of G

The overhead of walking through the tree at runtime would likely outweigh the benefits of
reducing the floating point cost. We can instead traverse the tree and generate low-level
code for computing all of the dot products - this function takes as an argument the vector g
and computes all of the dot products of Y with g. An example of such code was presented
in [11].

3.4 Comparison to spectral elements

Our approach is remarkably different than the spectral element method. In spectral element
methods, one typically works with tensor products of Lagrange polynomials over logically
rectangular domains. Efficient algorithms for evaluating the stiffness matrix or its action
follow naturally by working dimension-by-dimension. While such decompositions are possible
for unstructured shapes [8], these are restricted to specialized polynomial bases. On the
other hand, our approach is blind both to the element shape and kind of approximating
spaces used. While spectral element techniques may ultimately prove more effective when
available, our approach will enable some level of optimization in more general cases, such as
Raviart-Thomas-Nedelec [21, 22, 18, 19] elements on tetrahedra.

4 Experimental results

Here, we show that this optimization technique is successful at generating low-flop algorithms
for computing the element stiffness matrices associated with some standard variational forms.
First, we consider the bilinear forms for the Laplacian and advection in one coordinate
direction for tetrahedra. Second, we study the trilinear form for the weighted Laplacian. In
all cases, we generated the element tensors using FFC, the FEniCS Form Compiler [13, 15],
which in turn relies on FIAT [9, 10] to generate the finite element basis functions and
integration rules. Throughout this section, we let d = 2, 3 refer to the spatial dimension of
Ω.

8

Table 1: Element matrix indices and associated tensors (the slice A0
i· for each fixed index i)

displayed as vectors for the Laplacian on triangles with quadratic basis functions. All vectors
are scaled by six so they appear as integers.

index vector
(0, 0) 3 3 3 3
(0, 1) 1 0 1 0
(0, 2) 0 1 0 1
(0, 3) 0 0 0 0
(0, 4) 0 -4 0 -4
(0, 5) -4 0 -4 0
(1, 0) 1 1 0 0
(1, 1) 3 0 0 0
(1, 2) 0 -1 0 0
(1, 3) 0 4 0 0
(1, 4) 0 0 0 0
(1, 5) -4 -4 0 0

index vector
(2, 0) 0 0 1 1
(2, 1) 0 0 -1 0
(2, 2) 0 0 0 3
(2, 3) 0 0 4 0
(2, 4) 0 0 -4 -4
(2, 5) 0 0 0 0
(3, 0) 0 0 0 0
(3, 1) 0 0 4 0
(3, 2) 0 4 0 0
(3, 3) 8 4 4 8
(3, 4) -8 -4 -4 0
(3, 5) 0 -4 -4 -8

index vector
(4, 0) 0 0 -4 -4
(4, 1) 0 0 0 0
(4, 2) 0 -4 0 -4
(4, 3) -8 -4 -4 0
(4, 4) 8 4 4 8
(4, 5) 0 4 4 0
(5, 0) -4 -4 0 0
(5, 1) -4 0 -4 0
(5, 2) 0 0 0 0
(5, 3) 0 -4 -4 -8
(5, 4) 0 4 4 0
(5, 5) 8 4 4 8

4.1 Laplacian

We consider first the standard Laplacian operator

a(v, u) =

∫
Ω

∇v(x) · ∇u(x) dx. (9)

We gave a tensor product representation of the local stiffness matrix in equation (6). The
indices of the local stiffness matrix and the associated tensors are shown in Table 1.

Because the element stiffness matrix is symmetric, we only need to build the triangular
part. Even without any optimization techniques, this naturally leads from computing |P |2
contractions at a cost of d2 multiply-add pairs each to

(|P |+1
2

)
contractions, where |P | is the

dimension of the polynomial space P . Beyond this, symmetry opens up a further opportunity
for optimization. For every element e, Ge is symmetric. The equality of its off-diagonal
entries means that the contraction can be performed in

(
d+1
2

)
rather than d2 entries. This

is readily illustrated in the two-dimensional case. We contract a symmetric 2 × 2 tensor G
with an arbitrary 2× 2 tensor K:

G : K =

(
G11 G12

G12 G22

)
:

(
K11 K12

K21 K22

)
= G11K11 + G12(K12 + K21) + G22K22

= G̃tK̂,

(10)

where G̃t = (G11, G12, G22) and K̂t = (K11, K12 + K21, K22).

9

Table 2: Element matrix indices and associated tensors (the slice A0
i· for each fixed index i)

for the Laplacian on triangles with quadratic basis functions after transformation to make
use of symmetry.

index vector
(0, 0) 3 6 3
(0, 1) 1 1 0
(0, 2) 0 1 1
(0, 3) 0 0 0
(0, 4) 0 -4 -4
(0, 5) -4 -4 0
(1, 1) 3 0 0
(1, 2) 0 -1 0
(1, 3) 0 4 0
(1, 4) 0 0 0
(1, 5) -4 -4 0

index vector
(2, 2) 0 0 3
(2, 3) 0 4 0
(2, 4) 0 -4 -4
(2, 5) 0 0 0
(3, 3) 8 8 8
(3, 4) -8 -8 0
(3, 5) 0 -8 -8
(4, 4) 8 8 8
(4, 5) 0 8 0
(5, 5) 8 8 8

This simple calculation implies a linear transformation ·̂ from Rd×d into R(d+1
2) obtained by

taking the diagonal entries of the matrix together with the sum of the off-diagonal entries,
that may be applied to each reference tensor, together with an associated mapping ·̃ on
symmetric tensors that just takes the symmetric part and casts it as a vector. Hence, the
overall cost of computing an element stiffness matrix before optimizations goes from |P |2d2

to
(|P |+1

2

)(
d+1
2

)
.

An interesting property of this transformation of the reference tensor is that it is contractive
for the complexity-reducing relations we consider. The Hamming distance between two
items under ·̂ is bounded by the Hamming distance between the items. More precisely,
ρ(ŷ, ẑ) ≤ ρ(y, z). Furthermore, if items are colinear before transformation, their images will
be as well. Hence, for the optimizations we consider, we will not destroy any dependencies.
Moreover, the transformation may introduce additional dependencies. For example, before
applying the transformation, entries (0,1) and (1,5) are not closely related by Hamming
distance or colinearity, as seen in Table 1. However, after the transformation, we see that
the same items in Table 2 are colinear. Other examples can be found readily.

We optimized the evaluation of the Laplacian for Lagrange finite elements of degrees one
through three on triangles and tetrahedra using a composite complexity-reducing relation
with H+, H−, and c defined in Examples 2 and 3. We performed the optimization both
with and without symmetry. The results are shown in Tables 3 and 4. Figure 1 shows a
diagram of the minimum spanning tree computed by our code for the Laplacian on quadratic
elements using symmetry. Each node of the graph is labeled with a pair (i, j) indicating the
matrix entry (the vectors themselves are displayed in Table 2), and the edges are labeled
with the associated weights. Simple inspection reveals that the sum of the edge weights is
14, which when added to 3 to compute the dot product for the root node, agrees with the

10

Table 3: Number of multiply-add pairs in the optimized algorithm for computing the Lapla-
cian element stiffness matrix on triangles and tetrahedra for Lagrange polynomials of degree
one through three without using symmetry.

triangles tetrahedra

degree n m nm MAPs
1 9 4 36 13
2 36 4 144 25
3 100 4 400 74

degree n m nm MAPs
1 16 9 144 43
2 100 9 900 205
3 400 9 3600 864

Table 4: Number of multiply-add pairs in the optimized algorithm for computing the Lapla-
cian element stiffness matrix on triangles and tetrahedra for Lagrange polynomials of degree
one through three using symmetry.

triangles tetrahedra

degree n m nm MAPs
1 6 3 18 9
2 21 3 63 17
3 55 3 165 46

degree n m nm MAPs
1 10 6 60 27
2 55 6 330 101
3 210 6 1260 370

entry for quadratics in Table 4.

These techniques are successful in reducing the flop count, down to less than one operation
per entry on triangles and less than two on tetrahedra for quadratic and cubic elements.
We showed in [11] for low degree elements on triangles that going from standard numerical
quadrature to tensor contractions led to a significant reduction in actual run-time for matrix
assembly. From the tensor contractions, we got another good speedup by simply omitting
multiplication by zeros. From this, we only gained a modest additional speedup by using our
additional optimizations. However, this is most likely due to the relative costs of memory
access and floating point operations. We have to load the geometric tensor from memory
and we have to write every entry of the matrix to memory. Hence n+m in the tables gives a
lower bound on memory access for computing the stiffness matrix. Our optimizations lead to
algorithms for which there are a comparable number of arithmetic and memory operations.
Hence, our optimization has succeeded in reducing the cost of computing the local stiffness
matrix to a small increment to the cost of writing it to memory.

11

Figure 1: Minimum spanning tree for optimized computation of the Laplacian using
quadratic elements on triangles. The node labeled (3,3) is the root, and the flow is from
bottom to top.

12

Table 5: Number of multiply-add pairs in the optimized algorithm for computing the
coordinate-advection element stiffness matrix on triangles and tetrahedra for Lagrange poly-
nomials of degree one through three.

triangles tetrahedra

degree n m nm MAPs
1 9 2 18 4
2 36 2 72 22
3 100 2 200 59

degree n m nm MAPs
1 16 3 48 9
2 100 3 300 35
3 400 3 1200 189

4.2 Advection in one coordinate direction

Now, we consider constant coefficient advection aligned with a coordinate direction

a(v, u) =

∫
Ω

v(x)
∂u(x)

∂x1

dx. (11)

This is part of the operator associated with constant coefficient advection in some arbitrary
direction — optimizing the other coordinate directions would give similar results. These
results are shown in Table 5. Again, our optimization generates algorithms for which the
predominant cost of computing the element matrix is writing it down, as there is significantly
fewer than one floating point cycle per matrix entry in every case.

4.3 Weighted Laplacian

Our final operator is the variable coefficient Laplacian:

aw(v, u) =

∫
Ω

w(x)∇v(x) · ∇u(x) dx. (12)

This form may be viewed as a trilinear form a(w, v, u) in which w is the projection of the
coefficient into the finite element space. For many problems, this can be performed without
a loss in order of convergence. For nonlinear problems, we will have to reassemble this form
at each nonlinear iteration, so it is an important step to optimize. The reference tensor is

A0
iα =

∫
E

Φα1(X)
∂Φi1(X)

∂Xα2

∂Φi2(X)

∂Xα3

dX (13)

and the geometric tensor is

Gα
e = wα1 det F ′

e

∂Xα2

∂xβ

∂Xα3

∂xβ

. (14)

13

Note that the geometric tensor is the outer product of the geometric tensor for the constant
coefficient Laplacian, which we shall denote (GL)e with the coefficients of the weight function.
Unlike the constant coefficient case, the amount of arithmetic per entry in the element
stiffness matrix grows with the polynomial degree.

We could simply proceed with the optimization as we did for other forms — the element
tensor is just a collection of vectors that will have to be dotted into Ge for each element in
the mesh, but now the dot products are more expensive since the vectors are longer. In this
case, Ge must be explicitly formed for each element (this costs |P |d2 once (GL)e is formed).
On the other hand, we could use the decomposition of Ge into (GL)e and the coefficient
vector wk and do the contractions in stages. For example, we could organize the contraction
as

Ae
i =

(
A0

i,(α1,α2,α3)

(
GL

)(α2,α3)

e

)
wα1 , (15)

that is, for each of the |P |2 entries of the stiffness matrix, we compute |P | contractions of
d× d tensors with (GL)e. This is a similar optimization problem as the Laplacian, but with
|P | times more elements to optimize over. After we do this set of computations, we must
compute |P |2 dot products with the coefficient vector wk. Note that the contractions with
(GL)e may be optimized, but the resulting vectors to dot with wk will not be known until
run-time and must be computed at full cost. Hence, a lower bound for this approach is
|P | multiply-add pairs per entry (assuming that the contractions with GL were absolutely
free). On the other hand, one could contract with the coefficient first to give an array of
|P |2 tensors of size d × d, and then contract each of these with (GL)e. As before, the first
step can be optimized, but the second step cannot.

In any of these cases, we may use the same transformations to exploit symmetry as we did
in the constant coefficient case. Since Gα1,α2,α3

e = Gα1,α3,α2
e , we may view each slice A0

i· of
the reference tensor as an array of |P | tensors of size d× d and apply the transformation to
each of these. If we fully form Ge, this reduces the cost from |P |d2 to |P |

(
d+1
2

)
. In all of our

experiments, we made use of this.

In Table 6, we see the cost of computing the weighted Laplacian by the first approach
(optimizing directly the tensor product Ae

i = A0
iαGα

e). While the optimizations are not as
successful as for the constant coefficient operators, we still get reductions of 30%-50% in the
operation counts.

When we perform the contraction in stages, we find more dependencies (for example, the
slices of two of the tensors could be colinear although the entire tensors are not). We show
the cost of performing the optimized stage for contracting with (GL)e first in Table 7 and
for contracting with wk first in Table 8.

In order to get a fair comparison between these approaches, we must factor in the additional
costs of building Ge or performing the second stage of contraction. Once (GL)e is built
and symmetrized, it costs an additional |P |

(
d+1
2

)
multiply-add pairs to construct Ge. If we

optimize the computation of contracting with (GL)e first, we do not have to build Ge, but

14

Table 6: Number of multiply-add pairs in the optimized algorithm for computing the
weighted Laplacian element stiffness matrix on triangles and tetrahedra for Lagrange poly-
nomials of degree one through three using symmetry.

triangles tetrahedra

degree n m nm MAPs
1 6 9 54 27
2 21 18 378 218
3 55 30 1650 1110

degree n m nm MAPs
1 10 24 240 108
2 55 60 3300 1650
3 210 120 25200 14334

Table 7: Number of multiply-add pairs in the optimized algorithm for performing all of the
contractions with (GL)e in the weighted Laplacian on triangles and tetrahedra first, resulting
in

(|P |+1
2

)
arrays of length |P | to contract with wk.

triangles tetrahedra

degree n m nm MAPs
1 18 3 54 9
2 126 3 378 115
3 550 3 1650 683

degree n m nm MAPs
1 40 6 240 27
2 550 6 3300 693
3 4200 6 25200 7021

we must perform a dot product with wk for each entry of the matrix. This costs |P | per
contraction with

(|P |+1
2

)
entries in the matrix. If we optimize the contraction with each wk

first, then we have an additional
(|P |+1

2

)
contractions with (GL)e at a cost of

(
d+1
2

)
each. We

expect that which of these will be most effective must be determined (automatically) on a
case-by-case basis. Tables 10 and 9 show the comparisons for the first approach (labeled
Ge), the second approach (labeled (GL)e) and the third approach (labeled wk) by indicating
the cost of the optimized computation plus the additional stages of computation. In most
of these cases, contracting with the coefficient first leads to the lowest total cost.

5 Optimizing the optimization process

Since our graph (Y,E) is completely connected, we have |E| = O(|Y |2) and our optimization
process requires complexity that is at least quadratic in the number of entries in the element
stiffness matrix. In this section, we show how certain useful complexity-reducing relations
may be evaluated over all of Y in better than quadratic time, then discuss how we may build
a sparse graph (Y,E ′) with |E| = O(|Y |) that will admit a much more efficient optimization
process. Even though this process must be run only once per form and element (say the

15

Table 8: Number of multiply-add pairs in the optimized algorithm for performing all of the
contractions with the coefficient in the weighted Laplacian on triangles and tetrahedra first,
resulting in

(|P |+1
2

)
arrays of length

(
d+1
2

)
= 6 to contract with (GL)e.

triangles tetrahedra

degree n m nm MAPs
1 18 3 54 7
2 63 6 378 138
3 165 10 1650 899

degree n m nm MAPs
1 60 4 240 9
2 330 10 3300 465
3 1260 20 25200 7728

Table 9: Comparing the total number of multiply-add pairs for fully forming Ge, contracting
with (GL)e first, and contracting with wk first on triangles.

Ge (GL)e first wk first
degree MST additional total MST additional total MST additional total

1 27 3*3 38 9 6*3 27 7 6*3 25
2 218 3*6 236 115 21*6 241 138 21*3 201
3 1110 3*10 1140 683 55*10 1233 899 55*3 1064

Table 10: Comparing the total number of multiply-add pairs for fully forming Ge, contracting
with (GL)e first, and contracting with wk first on tetrahedra.

Ge (GL)e first wk first
degree MST additional total MST additional total MST additional total

1 108 6*4 132 27 10*4 67 9 10*6 69
2 1650 6*10 1710 693 55*10 1234 465 55*6 795
3 14334 6*20 14454 7021 210*20 11221 7728 210*6 8988

16

Laplacian with quadratics on triangles), the quadratic algorithm can become very time
consuming and challenge a single computer’s resources for forms of high arity using high
degree polynomials on tetrahedra.

5.1 Search algorithms

Before discussing how we may evaluate some of these complexity-reducing relations over the
collection Y in better than quadratic time, we first describe some basic notation we will use
for hash tables throughout this section and the next.

Hash tables are standard data structures [14] that associate each member of a set of keys
to some value, possibly drawn from another set of objects. The important point about
hash tables is that the basic operations of setting and getting values are expected to be
independent of the number of entries in the table (expected constant time access). Many
higher-level programming languages have library support or built-in features supporting hash
tables (many implementations of the standard template library in C++ include hash tables,
and scripting languages such as Python and Perl have them built in as primitive types).

We begin by establishing some notation for the basic operations we use. If a is a key of table
T , then we find the value associated with a by T [a]. If there is no value associated with a
(that is, if a is not a key of T , we may update T by adding a key a associated with value b
by the notation T [a] ← b. We use the same notation to indicate setting a new value to an
existing key.

As before, we label the vectors yi for 1 ≤ i ≤ n. We want to partition the labels into a set
of subsets E such that for each E ∈ E , the vectors associated with each label in E are equal.
Moreover, if two vectors are equal, then their labels must belong to the same E. This is
easily accomplished by setting up a hash table whose keys are vectors and whose values are
subsets of the integers 1 ≤ i ≤ n. This process is described in Algorithm 1

Algorithm 1 Determining equality among vectors

E an empty table mapping vectors to subsets of {i}ni=1.
for all 1 ≤ i ≤ n do

if yi is a key of E then
E[yi]← E[vi] ∪ {i}

else if −yi is a key of E then
E[−yi]← E[−yi] ∪ {i}

else
E[yi]← {i}

end if
end for

17

Floating point arithmetic presents a slight challenge to hashing. Numbers which are close
together (within some tolerance) that should be treated as equal must be rounded to so that
they are indeed equal. Hashing relies on a function that maps items into a set of integers
(the ”hash code”). These functions are discontinuous and sensitive to small perturbations.
For most numerical algorithms in floating point arithmetic, we may define equality to be
”near equality”, but hash tables require us to round or use rational arithmetic before any
comparisons are made. We have successfully implemented our algorithms in both cases.

As an alternative to hashing, one could form a binary search tree or sort the vectors by a
lexicographic ordering. These would rely on a more standard ”close to equal” comparison
operation, but only run in O(mn log (mn)) time. So, for large enough data sets, hashing will
be more efficient.

We may similarly partition the labels into a set of subsets C such that for each C ∈ C, the
vectors associated with the labels in C are colinear. Similarly, if two vectors are colinear,
then their labels must belong to the same C. This process may be performed by constructing
the collection of unit vectors Â, with ŷi = yi

‖yi‖ for each 1 ≤ i ≤ n for some norm ‖ · ‖ and

using Algorithm 1 on Â.

Finding vectors that are close together in Hamming distance is more subtle. At worst, the
cost is O(mn2), as we have to compare every entry of every pair of vectors. However, we
may do this in expected linear time with some assumptions about Y . We first describe the
algorithm, then state the conditions under which the algorithm performs in worse than linear
time.

Our vectors each have m components. We start by forming m empty hash tables. Each Hi

will map numbers that appear in the ith position of any vector to the labels of vectors that
have that entry in that position. This is presented in Algorithm 2, in which yi

j denotes the
jth entry of yi.

Algorithm 2 Mapping unique entries at each position to vectors containing them

for all 1 ≤ i ≤ d do
Hi an empty table mapping numbers to sets of vector labels from {i}ni=1

end for
for all 1 ≤ i ≤ n do

for all 1 ≤ j ≤ m do
if yi

j is a key of Hj then
Hj[y

i
j]← Hj[y

i
j] ∪ {i}

else
Hj[y

i
j] := {i}

end if
end for

end for

This process runs in expected O(nm) time. From these tables, we can construct a table

18

that gives the Hamming distance between any two vectors, as seen in Algorithm 3. This
algorithm counts down from d each time it discovers an entry that two vectors share. Our
algorithm reflects the symmetry of the Hamming distance.

Algorithm 3 Computing Hamming distances efficiently

D an empty table
for all 1 ≤ i ≤ n do

D[i] an empty table
end for
for all 1 ≤ i ≤ m do

for all a in the keys of Hi do
for all unique combinations k, ` of labels in Hi[a] do

α := min(k, `), β := max(k, `)
if D[α] has a key β then

D[α][β]← D[α][β]− 1
else

D[α][β] := m− 1
end if

end for
end for

end for

On output, for 1 ≤ i < j ≤ n, if D[i][j] has no entry, the distance between vi and vj is m.
Otherwise, the table contains the Hamming distance between the two vectors.

Regarding complexity, there is a double loop over the entries of each Hi. Hence, the algorithm
is quadratic in the maximum number of vectors that share the same entry at the same
location. Presumably, this is considerably less than n on most data sets.

5.2 Using a sparse graph

If we create a graph (Y, Ẽ) with significantly fewer edges than (Y, E), we may be able to get
most of the reduction in operation count while having a more efficient optimization process.
For example, we might choose to put a cutoff on ρ, only using edges that have a large enough
complexity-reduction. So, we can define the set of edges being

Ek = {{yi, yj} : ρ(yi, yj) ≤ k} (16)

For example, if we use Algorithms 2 and 3 to evaluate H+ over all pairs from Y , then we
are using ρ = H+ and k = m− 1. Also, note that our structure D encodes a sparse graph.
That is, the vectors of Y are the nodes of the graph, the neighbors of each yi are simply the

19

keys of D[yi], and the edge weight between some yi and neighbor yj is D[yi][jj]. It is not
hard to move from this table into whatever data structure is used for graphs.

Then, we could add colinearity or other complexity-reducing relations to this graph. If we
use Algorithm 1 on the unit vectors to determine sets of colinear vectors, we can update
the the graph by either adding edges or updating the edge weights for each pair of colinear
vectors.

If |Ek| = O(|Y |), then computing a minimum spanning tree will require only O(n log n) time
rather than O(n2 log n). However, there is no guarantee that (Y,Ek) will be a connected
graph. Some vectors might not have close neighbors, or else some subgraphs do not connect
with each other. An optimized algorithm can still be obtained by finding the connected
components of the (Y,Ek) and finding a minimum spanning tree for each component. Then,
the total cost of the computation is m times the number of connected components plus the
sum of the weights of each of the minimum spanning trees.

6 Conclusion and ongoing work

We have developed a general optimization strategy for the evaluation of local stiffness ma-
trices for finite elements. This is based on first formulating the computation as a sequence
of tensor contractions, then introducing a new concept of complexity-reducing relations that
allows us to set the optimization in a graph context. The optimization itself proceeds by
computing a minimum spanning tree. These techniques worked very well at reducing the
cost of evaluating finite element matrices for several forms using Lagrange elements of de-
grees one through three on triangles and tetrahedra. Finally, we discussed some efficient
algorithms for detecting equality and colinearity and for evaluating the pairwise Hamming
distance over the entire set of tensors.

In [11], we saw that frequently, some of the tensors will be linear combinations of two or
more other tensors. However, both locating and making use of such relations in a more
formal context has been difficult. We are working on geometric search algorithms to locate
linear dependencies efficiently. However, once they are located, our optimization process
must occur over a hypergraph rather than a graph. Finding a true minimum is also much
more difficult, and we are working on heuristics that will allow us to combine these two
approaches.

Finally, we plan to integrate our optimization strategy with FFC. While FFC currently
generates very efficient code for evaluating variational forms, we will improve upon this
generated code by piping the tensors through our optimization process before generating
code to perform the contractions. This will lead to a domain-specific optimizing compiler for
finite elements; by exploiting latent mathematical structure, we will automatically generate
more efficient algorithms for finite elements than people write by hand.

20

References

[1] B. Bagheri and R. Scott, Analysa. http://people.cs.uchicago.edu/∼ridg/al/
aa.html.

[2] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II Differential Equations
Analysis Library. http://www.dealii.org.

[3] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element
Methods, Springer-Verlag, 1994.

[4] P. G. Ciarlet, Numerical Analysis of the Finite Element Method, Les Presses de
l’Universite de Montreal, 1976.

[5] P. Dular and C. Geuzaine, GetDP: a General environment for the treatment of
Discrete Problems. http://www.geuz.org/getdp/.

[6] J. Hoffman, J. Jansson, and A. Logg, DOLFIN. http://www.fenics.org/

dolfin/.

[7] J. Hoffman and A. Logg, DOLFIN: Dynamic Object oriented Library for FINite
element computation, Tech. Report 2002–06, Chalmers Finite Element Center Preprint
Series, 2002.

[8] G. E. Karniadakis and S. J. Sherwin, Spectral/hp element methods for CFD, Nu-
merical Mathematics and Scientific Computation, Oxford University Press, New York,
1999.

[9] R. C. Kirby, FIAT: A new paradigm for computing finite element basis functions,
ACM Trans. Math. Software, 30 (2004), pp. 502–516.

[10] , Optimizing FIAT with the level 3 BLAS, submitted to ACM Trans. Math. Soft-
ware, (2005).

[11] R. C. Kirby, M. Knepley, A. Logg, and L. R. Scott, Optimizing the evaluation
of finite element matrices, To appear in SIAM J. Sci. Comput., (2005).

[12] R. C. Kirby, M. Knepley, and L. R. Scott, Evaluation of the action of finite
element operators, submitted to BIT, (2005).

[13] R. C. Kirby and A. Logg, A compiler for variational forms. submitted to ACM
Trans. Math. Softw., 2005.

[14] A. Levitin, Introduction to the Design and Analysis of Algorithms, Addison-Wesley,
2003.

[15] A. Logg, The FEniCS Form Compiler FFC. http://www.fenics.org/ffc/.

[16] K. Long, Sundance. http://csmr.ca.sandia.gov/∼krlong/sundance.html.

21

[17] , Sundance, a rapid prototyping tool for parallel PDE-constrained optimization, in
Large-Scale PDE-Constrained Optimization, Lecture notes in computational science
and engineering, Springer-Verlag, 2003.

[18] J.-C. Nédélec, Mixed finite elements in R3, Numer. Math., 35 (1980), pp. 315–341.

[19] , A new family of mixed finite elements in R3, Numer. Math., 50 (1986), pp. 57–81.

[20] O. Pironneau, F. Hecht, and A. L. Hyaric, FreeFEM. http://www.freefem.

org/.

[21] P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order
elliptic problems, in Mathematical aspects of finite element methods (Proc. Conf., Con-
siglio Naz. delle Ricerche (C.N.R.), Rome, 1975), Springer, Berlin, 1977, pp. 292–315.
Lecture Notes in Math., Vol. 606.

[22] , Primal hybrid finite element methods for 2nd order elliptic equations, Math.
Comp., 31 (1977), pp. 391–413.

22

